Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; 36(3): e2305183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37608621

RESUMO

MXenes are a family of 2D transition metal carbides and nitrides with remarkable properties, bearing great potential for energy storage and catalysis applications. However, their oxidation behavior is not yet fully understood, and there are still open questions regarding the spatial distribution and precise quantification of surface terminations, intercalated ions, and possible uncontrolled impurities incorporated during synthesis and processing. Here, atom probe tomography (APT) analysis of as-synthesized Ti3 C2 Tx MXenes reveals the presence of alkali (Li, Na) and halogen (Cl, F) elements as well as unetched Al. Following oxidation of the colloidal solution of MXenes, it is observed that the alkalis are enriched in TiO2 nanowires. Although these elements are tolerated through the incorporation by wet chemical synthesis, they are often overlooked when the activity of these materials is considered, particularly during catalytic testing. This work demonstrates how the capability of APT to image these elements in 3D at the near-atomic scale can help to better understand the activity and degradation of MXenes, in order to guide their synthesis for superior functional properties.

2.
J Microsc ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115688

RESUMO

Reliable and consistent preparation of atom probe tomography (APT) specimens from aqueous and hydrated biological specimens remains a significant challenge. One particularly difficult process step is the use of a focused ion beam (FIB) instrument for preparing the required needle-shaped specimen, typically involving a 'lift-out' procedure of a small sample of material. Here, two alternative substrate designs are introduced that enable using FIB only for sharpening, along with example APT datasets. The first design is a laser-cut FIB-style half-grid close to those used for transmission electron microscopy (TEM) that can be used in a grid holder compatible with APT pucks. The second design is a larger, standalone self-supporting substrate called a 'crown', with several specimen positions, which self-aligns in APT pucks, prepared by electrical discharge machining (EDM). Both designs are made nanoporous, to provide strength to the liquid-substrate interface, using chemical and vacuum dealloying. Alpha brass, a simple, widely available, lower-cost alternative to previously proposed substrates, was selected for this work. The resulting designs and APT data are presented and suggestions are provided to help drive wider community adoption.

3.
Microsc Microanal ; 29(6): 1992-2003, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37856778

RESUMO

Repeatable and reliable site-specific preparation of specimens for atom probe tomography (APT) at cryogenic temperatures has proven challenging. A generalized workflow is required for cryogenic specimen preparation including lift-out via focused ion beam and in situ deposition of capping layers, to strengthen specimens that will be exposed to high electric field and stresses during field evaporation in APT and protect them from environment during transfer into the atom probe. Here, we build on existing protocols and showcase preparation and analysis of a variety of metals, oxides, and supported frozen liquids and battery materials. We demonstrate reliable in situ deposition of a metallic capping layer that significantly improves the atom probe data quality for challenging material systems, particularly battery cathode materials which are subjected to delithiation during the atom probe analysis itself. Our workflow design is versatile and transferable widely to other instruments.

4.
ACS Energy Lett ; 8(8): 3381-3386, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588014

RESUMO

Introduction of interstitial dopants has opened a new pathway to optimize nanoparticle catalytic activity for, e.g., hydrogen evolution/oxidation and other reactions. Here, we discuss the stability of a property-enhancing dopant, B, introduced through the controlled synthesis of an electrocatalyst Pd aerogel. We observe significant removal of B after the hydrogen oxidation reaction. Ab initio calculations show that the high stability of subsurface B in Pd is substantially reduced when H is adsorbed/absorbed on the surface, favoring its departure from the host nanostructure. The destabilization of subsurface B is more pronounced, as more H occupies surface sites and empty interstitial sites. We hence demonstrate that the H2 fuel itself favors the microstructural degradation of the electrocatalyst and an associated drop in activity.

5.
Adv Sci (Weinh) ; 10(24): e2300626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290039

RESUMO

Gas-solid reactions are important for many redox processes that underpin the energy and sustainability transition. The specific case of hydrogen-based iron oxide reduction is the foundation to render the global steel industry fossil-free, an essential target as iron production is the largest single industrial emitter of carbon dioxide. This perception of gas-solid reactions has not only been limited by the availability of state-of-the-art techniques which can delve into the structure and chemistry of reacted solids, but one continues to miss an important reaction partner that defines the thermodynamics and kinetics of gas phase reactions: the gas molecules. In this investigation, cryogenic-atom probe tomography is used to study the quasi in situ evolution of iron oxide in the solid and gas phases of the direct reduction of iron oxide by deuterium gas at 700°C. So far several unknown atomic-scale characteristics are observed, including, D2 accumulation at the reaction interface; formation of a core (wüstite)-shell (iron) structure; inbound diffusion of D through the iron layer and partitioning of D among phases and defects; outbound diffusion of oxygen through the wüstite and/or through the iron to the next free available inner/outer surface; and the internal formation of heavy nano-water droplets at nano-pores.

6.
Phys Rev Lett ; 130(16): 168001, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154636

RESUMO

When solid-state redox-driven phase transformations are associated with mass loss, vacancies are produced that develop into pores. These pores can influence the kinetics of certain redox and phase transformation steps. We investigated the structural and chemical mechanisms in and at pores in a combined experimental-theoretical study, using the reduction of iron oxide by hydrogen as a model system. The redox product (water) accumulates inside the pores and shifts the local equilibrium at the already reduced material back toward reoxidation into cubic Fe_{1-x}O (where x refers to Fe deficiency, space group Fm3[over ¯]m). This effect helps us to understand the sluggish reduction of cubic Fe_{1-x}O by hydrogen, a key process for future sustainable steelmaking.

7.
J Phys Chem Lett ; 13(36): 8416-8421, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049043

RESUMO

To advance the understanding of the degradation of the liquid electrolyte and Si electrode, and their interface, we exploit the latest developments in cryo-atom probe tomography. We evidence Si anode corrosion from the decomposition of the Li salt before charge-discharge cycles even begin. Volume shrinkage during delithiation leads to the development of nanograins from recrystallization in regions left amorphous by the lithiation. The newly created grain boundaries facilitate pulverization of nanoscale Si fragments, and one is found floating in the electrolyte. P is segregated to these grain boundaries, which confirms the decomposition of the electrolyte. As structural defects are bound to assist the nucleation of Li-rich phases in subsequent lithiations and accelerate the electrolyte's decomposition, these insights into the developed nanoscale microstructure interacting with the electrolyte contribute to understanding the self-catalyzed/accelerated degradation Si anodes and can inform new battery designs unaffected by these life-limiting factors.

8.
Adv Mater ; 34(28): e2203030, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35514107

RESUMO

Fuel cells recombine water from H2 and O2 thereby can power, for example, cars or houses with no direct carbon emission. In anion-exchange membrane fuel cells (AEMFCs), to reach high power densities, operating at high pH is an alternative to using large volumes of noble metals catalysts at the cathode, where the oxygen-reduction reaction occurs. However, the sluggish kinetics of the hydrogen-oxidation reaction (HOR) hinders upscaling despite promising catalysts. Here, the authors observe an unexpected ingress of B into Pd nanocatalysts synthesized by wet-chemistry, gaining control over this B-doping, and report on its influence on the HOR activity in alkaline conditions. They rationalize their findings using ab initio calculations of both H- and OH-adsorption on B-doped Pd. Using this "impurity engineering" approach, they thus design Pt-free catalysts as required in electrochemical energy conversion devices, for example, next generations of AEMFCs, that satisfy the economic and environmental constraints, that is, reasonable operating costs and long-term stability, to enable the "hydrogen economy."

9.
J Mater Chem A Mater ; 10(9): 4926-4935, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35341092

RESUMO

The worldwide development of electric vehicles as well as large-scale or grid-scale energy storage to compensate for the intermittent nature of renewable energy generation has led to a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term, sustainable and safe operation requires detailed knowledge of their microstructure and chemistry, and their evolution under operating conditions, on the nanoscale. Atom probe tomography (APT) provides compositional mapping of materials in three dimensions with sub-nanometre resolution, and is poised to play a key role in battery research. However, APT is underpinned by an intense electric field that can drive lithium migration, and many battery materials are reactive oxides, requiring careful handling and sample transfer. Here, we report on the analysis of both anode and cathode materials and show that electric-field driven migration can be suppressed by using shielding by embedding powder particles in a metallic matrix or by using a thin conducting surface layer. We demonstrate that for a typical cathode material, cryogenic specimen preparation and transport under ultra-high vacuum leads to major delithiation of the specimen during the analysis. In contrast, the transport of specimens through air enables the analysis of the material. Finally, we discuss the possible physical underpinnings and discuss ways forward to enable shielding from the electric field, which helps address the challenges inherent to the APT analysis of battery materials.

10.
PLoS One ; 17(2): e0262543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139091

RESUMO

Numerous metallurgical and materials science applications depend on quantitative atomic-scale characterizations of environmentally-sensitive materials and their transient states. Studying the effect upon materials subjected to thermochemical treatments in specific gaseous atmospheres is of central importance for specifically studying a material's resistance to certain oxidative or hydrogen environments. It is also important for investigating catalytic materials, direct reduction of an oxide, particular surface science reactions or nanoparticle fabrication routes. This manuscript realizes such experimental protocols upon a thermochemical reaction chamber called the "Reacthub" and allows for transferring treated materials under cryogenic & ultrahigh vacuum (UHV) workflow conditions for characterisation by either atom probe or scanning Xe+/electron microscopies. Two examples are discussed in the present study. One protocol was in the deuterium gas charging (25 kPa D2 at 200°C) of a high-manganese twinning-induced-plasticity (TWIP) steel and characterization of the ingress and trapping of hydrogen at various features (grain boundaries in particular) in efforts to relate this to the steel's hydrogen embrittlement susceptibility. Deuterium was successfully detected after gas charging but most contrast originated from the complex ion FeOD+ signal and the feature may be an artefact. The second example considered the direct deuterium reduction (5 kPa D2 at 700°C) of a single crystal wüstite (FeO) sample, demonstrating that under a standard thermochemical treatment causes rapid reduction upon the nanoscale. In each case, further studies are required for complete confidence about these phenomena, but these experiments successfully demonstrate that how an ex-situ thermochemical treatment can be realised that captures environmentally-sensitive transient states that can be analysed by atomic-scale by atom probe microscope.


Assuntos
Gases
11.
J Am Chem Soc ; 144(2): 987-994, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982554

RESUMO

Metal nanogels combine a large surface area, a high structural stability, and a high catalytic activity toward a variety of chemical reactions. Their performance is underpinned by the atomic-level distribution of their constituents, yet analyzing their subnanoscale structure and composition to guide property optimization remains extremely challenging. Here, we synthesized Pd nanogels using a conventional wet chemistry route, and a near-atomic-scale analysis reveals that impurities from the reactants (Na and K) are integrated into the grain boundaries of the poly crystalline gel, typically loci of high catalytic activity. We demonstrate that the level of impurities is controlled by the reaction condition. Based on ab initio calculations, we provide a detailed mechanism to explain how surface-bound impurities become trapped at grain boundaries that form as the particles coalesce during synthesis, possibly facilitating their decohesion. If controlled, impurity integration into grain boundaries may offer opportunities for designing new nanogels.

12.
Microsc Microanal ; : 1-18, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039105

RESUMO

Imaging of liquids and cryogenic biological materials by electron microscopy has been recently enabled by innovative approaches for specimen preparation and the fast development of optimized instruments for cryo-enabled electron microscopy (cryo-EM). Yet, cryo-EM typically lacks advanced analytical capabilities, in particular for light elements. With the development of protocols for frozen wet specimen preparation, atom probe tomography (APT) could advantageously complement insights gained by cryo-EM. Here, we report on different approaches that have been recently proposed to enable the analysis of relatively large volumes of frozen liquids from either a flat substrate or the fractured surface of a wire. Both allowed for analyzing water ice layers which are several micrometers thick consisting of pure water, pure heavy water, and aqueous solutions. We discuss the merits of both approaches and prospects for further developments in this area. Preliminary results raise numerous questions, in part concerning the physics underpinning field evaporation. We discuss these aspects and lay out some of the challenges regarding the APT analysis of frozen liquids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...